
Lesser Known Security Problems in 
PHP Applications
Stefan Esser

Zend Conference 
September 2008
Santa Clara, CA 



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

The Speaker

Stefan Esser

• 8 years of PHP Core Experience

• 10 years of Security Experience

• Suhosin and The Month of PHP Bugs

• Founder and Head of R&D at SektionEins GmbH

2



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Topics

• Lesser Known Security Problems

• Less Obvious Exploitation Paths

• Inter Application Exploitation

• Vulnerability Classes Discovered during Real Audits

3



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

The Mantra...

• Filter Input, Escape Output

• often misunderstood

• vulnerabilities hidden in input filters

• wrong escaping / encoding functions

• not every vulnerability is caused by tainted data

4



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Input Filtering - Short reminder

• Filter what you actually use and 
not what you believe is the same

<?php
   // The TikiWiki approach to input filtering

   if (!is_numeric($_REQUEST[‘id‘])) {
      die(‘Hack attack‘);    // <-- will discuss this later
   }
   ...
   $_REQUEST = array_merge($_COOKIE, $_GET, $_POST);
   // ^----- really bad idea: GPC != CGP
?>

5



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

$_SERVER and URL Encoding

• PHP_SELF and REQUEST_URI often used

• assumed to be URL encoded, but

• PHP_SELF is never encoded (typical XSS)

• REQUEST_URI encoding depends on client

<?php
   if ($_SERVER[‘REQUEST_URI‘] == ‘common.php‘) {
      die(“do not call this file directly“);
   }
   // File can still be requested by common%2ephp
?>

6



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

$_REQUEST and Cookies

• never forget $_REQUEST also contains cookie data

• cookies or cookie data might be unexpected

• injected through XSS, HTTP Response Splitting 
or other cross domain browser bug

• TLD wide cookies - *.co.uk / *.co.kr

• originating from another application on same domain

7



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

$_REQUEST and Cookie DOS

• An injected cookie might kill the application

<?php
   // one cookie to kill them all
   if (isset($_REQUEST[‘GLOBALS‘])) {
      die(‘GLOBALS overwrite attempt‘);
   }
?>

8



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

$_REQUEST and Delayed CSRF

• An injected cookie manipulates/overrides the control 
flow of a request performed by the user

• Traditional CSRF protections useless

<?php
   // save only modified admin options
   foreach ($_REQUEST[‘options‘] as $key => $val) {
      if (isset($options[$key]) && $options[$key] != $val) {
         saveOption($key, $val);
      }
   }
   // Because options[includePath] could be an evil cookie
   // there is a Delayed CSRF vulnerability
   // that allows remote file inclusion
?>

9



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

auto_globals_jit - Documentation

; When enabled, the SERVER and ENV variables are created when they're first

; used (Just In Time) instead of when the script starts. If these variables

; are not used within a script, having this directive on will result in a

; performance gain. The PHP directives register_globals, register_long_arrays,

; and register_argc_argv must be disabled for this directive to have any affect.

infamous documentation in php.ini

10



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

auto_globals_jit - Open Questions

• Documentation is correct ?

- Almost definitely maybe (probably)

- Ok, no

• What about $_REQUEST ?

• Is JIT really just-in-time of first usage ?

11



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

auto_globals_jit - Reality

• Documentation is wrong

• There is no just-in-time creation on first usage

• auto_globals are usually created before the start 
of the script if the compiler detects their usage

• or when an extension requests their creation

• The compiler just detects direct usage

• access by variable-variables is NOT detected

12



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

auto_globals_jit - Security Problem

• prepended input filtering using variable-variables FAILS

• auto_globals do not exist when the filter executes

<?php
   $filterTargets = array(‘_REQUEST‘, ‘_SERVER‘, ‘_ENV‘, ...);
   foreach ($filterTargets as $target) {
      $$target = filterRecursive((array)$$target);
   }
?>

• when a PHP script accesses the auto_globals they are 
created and filled with the not filtered values

13



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Insecure Cookie Parameters

• very very common problem

• sites use SSL to protect against session identifier sniffing

• but forgets to mark session identifier cookie as secure

• attacker injects HTTP requests to get plaintext cookie

14



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Session Data Mixup (I)

• session data is stored in /tmp by default

• can be changed by configuration

• session data is shared by all applications that store it in 
the same location

• bad for shared hosts

• but can also lead to inter application exploits

15



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Session Data Mixup (II)

• Example 1 - Setup:

• customer runs two applications on his own server

• both applications contain multi-step forms

• both applications store data of previous steps in a session

• application 1 merges user input into the session and 
validates/filters after all steps are processed

• application 2 merges only validated and filtered data into the 
session

16



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Session Data Mixup (III)

• Example 1 - Exploit:

• enter malicious content (XSS, SQL Inj.) into application 1

• copy session identifier of application 1 into session cookie of 
application 2

• use application 2 which trust everything within the session

➡  XSS payload from session eventually exploits application 2

17



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Session Data Mixup (IV)

• Example 2 - Setup:

• customer runs two applications on his own server

• both applications serve a separate group of users

• both applications are written by the same developers

• both applications share a similar implementation

18



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Session Data Mixup (V)

• Example 2 - Exploit:

• attacker is a legit user of application 1
(maybe even a moderator / admin)

• attacker logs himself into application 1

• and copies his session identifier into the session cookie of 
application 2

• because the implementation of the User object is shared, 
application 2 finds a valid User object in its session

• attacker is now logged into application 2

19



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Session Data Mixup (V)

• Best Practices

• store session data in different locations

➡ ini_set(“session.save_path“, “/tmp/application_1/“);

➡ user space session handler

• embed application marker into the session

➡ if ((string)$_SESSION[‘application‘] !== ‘application_1‘) die();

• encrypt session data with application specific keys

20



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Insecure Transactions (I)

• some PHP applications choose to override the internal 
session management with a user space session handler

- usual implementation

• open    - ignored

• read    - SELECT * FROM tb_sessions WHERE sid=:sid

• write   - INSERT/UPDATE tb_sessions SET data=:data WHERE sid=:sid

• close   - ignore

• destroy - ignore 

21



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Session Handling - Insecure Transactions (II)

• Usual implementation ignores that reading, updating 
and storing the session data forms a transaction

• Most applications with user space session handlers are 
vulnerable to session race conditions

22



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Database Handling - Status Quo

• SQL Injection widely known

• SQL Transactions less known and used

• SQL Errors are seldomly handled

• Input filters let overlong input through

23



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Database Handling - MySQL‘s max_packet_size

• max_packet_size configures maximum size of a packet

• anything bigger will not be sent

• overlong input can result in queries not being sent

• allows e.g. disabling logging queries

• referer header

• user-agent header

• session-identifiers, ...

24



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Database Handling - Truncated Data

• database columns have a maximum width

• by default MySQL will truncate any data that doesn‘t fit

from ‘admin           x‘

to     ‘admin           ‘

• by default string comparision will ignore trailing spaces
 

➡ Security Problem because there are 2 admin users now

25



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Database Handling - Best Practices

• Use database transactions for application transactions

• Handle errors, assume everything could fail

• Use MySQL‘s sql_mode STRICT_ALL_TABLES

• Catch overlong input in input filtering

26



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Multi-Byte Encodings - A security problem?

• PHP uses backslash escaping in many places

➡ ( \ => \\,  ‘ => \‘, “ => \“ )

• backslash escaping is a problem for multi-byte parsers if 
the encoding allows backslashes as 2nd, 3rd, ... byte

• UTF-8 not affected, but several asian encodings like 
GBK, EUC-KR, SJIS, ...

SELECT * FROM u WHERE login='X\' OR id=1/*' AND pwd='XXXXXXXXXX'

will be parsed as

SELECT * FROM u WHERE login='X\' OR id=1/*' AND pwd='XXXXXXXXXX'

27



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Multi-Byte Encodings - Still a problem

• SQL-Injection

• mysql_real_escape_string() not safe when SET NAMES is used

• Shell-Command Injection

• PHP <= 5.2.6 doesn‘t escape shell commands for MB-locales

• Eval/Preg-Replace/Create_Function Injection

• PHP doesn‘t escape correctly for zend_multibyte mode

• PHP Cache/Config Injection

• var_export() doesn‘t escape correctly for zend_multibyte mode

28



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Multi-Byte Encodings - Special Case UTF-7

• UTF-7 is a 7 bit wide encoding

• Characters used -+A-Za-z0-9

• not handled by any of PHP‘s escape functions

• browsers can be tricked to parse pages as UTF-7 when 
no charset is given

➡ XSS vulnerabilities (also common on banking sites)

29



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Random Numbers

• Random Number Generators

• srand() / rand()

• Wrapper around libc‘s rand() - 32 bit Seed

• mt_srand() / mt_rand()

• Mersenne Twister - 32 bit Seed

• uniqid(?, true) / lcg_value()

• Combined linear congruential generator - weak 64 bit Seed

30



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

mt_srand() / srand() - weak seeding

• PHP seeds automatically since 4.2.0

• Disadvantages of manual seeding

• random number generator state is easier to predict

• seeding influences other applications

• manual seeding usually weaker than PHP‘s seeding

<?php
   // examples for very bad seedings
   mt_srand(time());
   mt_srand(microtime() * 100000);
   mt_srand(microtime() * 1000000);
   mt_srand(microtime() * 10000000); //<- Joomla Password Reset
?>

31



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

mt_srand() / srand() - Automatic seeding

• Automatic seeding in PHP <= 5.2.5

• time(0) * PID * 1000000 * php_combined_lcg()

• on 32bit systems

• lower bits of time(0) and PID can be controlled

• due to modular arithmethic product is 0 every 2.1 years

• on 64bit systems

• precision loss during double to int conversion

• strength around 24 bits 

32



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

mt_rand() / rand() - weak random numbers

• numbers depend only on 32 bit seed and running time

• not suited for cryptographic secrets

• output of PRNG might leak state

• state is process-wide => PRNG is shared resource

• attacker can get fresh seed by crashing PHP

33



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

mt_(s)rand / (s)rand - Shared Hosting

• CGI

• PRNG freshly seeded for every request

• running time not necessary for prediction

• mod_php / fastcgi

• PRNG is shared for requests handled by same process

• e.g. Keep-Alive

• Sharing across VHOSTS

• mean customer can seed PRNG to attack others

34



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

mt_(s)rand / (s)rand - Cross Application Attacks

• applications share the same PRNG

• leak in one application allows attacking another

• seeding in one application allows attacking another

• phpBB2 seeds random number generator and leaks state

• allows predicting password reset feature in Wordpress

35



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

mt_(s)rand / (s)rand - Best Practices

• do not seed the PRNGs

• do not use PHP‘s PRNGs for cryptographic secrets

• do not directly output random numbers

• combine output of different PRNGs

• use /dev/(u)random on unix systems

36



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

PHP‘s ZipArchive

• 0-day Vulnerability in PHP

• exposed by applications using ZipArchive

• discovered during an audit of customer code

• reported 85 days ago to PHP‘s security response team

• unpacking a malicious ZIP can overwrite any file

• Exploit: just name archived files like ../../../../../www/hack.php

37



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

HTTP Header Response Splitting/Suppression

• Protection against HTTP Response Splitting

• introduced with PHP 5.1.2

• not sufficient for old Netscape Proxies

• suppresses headers containing recognized attacks

• allows suppressing HTTP headers

• security problem when Content-Disposition: attachment is suppressed

38



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

The End ?!?

There are more unusual, lesser known and dangerous 
vulnerabilities, but we are running out of time...

39



Stefan Esser  •  Lesser Known Security Problems in PHP Applications  •  2008/Sep/17  •  

Thank you for listening

QUESTIONS ???

40


